Geometria analítica 6f54m

Geometria analítica é um campo da matemática em que é possível equacionar elementos geométricos. 6qf3g

Geometria analítica é um campo da matemática em que é possível representar elementos geométricos, como pontos, retas, triângulos, quadriláteros e circunferências, utilizando expressões algébricas. As expressões algébricas são derivadas da ideia de união de pontos que seguem determinado padrão. Pontos esses que são dispostos em um sistema de coordenadas proposto por René Descartes. 4s1d70

Saiba mais: Área do triângulo por meio da geometria analítica

O que a geometria analítica estuda? 285j26

A geometria analítica tem como principal objetivo descrever objetos geométricos utilizando um sistema de coordenadas, o plano cartesiano. Este consiste em dois eixos reais perpendiculares entre si. O eixo horizontal é chamado de eixo das abscissas, e o eixo vertical é chamado de eixo das ordenadas.

Conceitos importantes da geometria analítica 3j5sp

  • Distância entre dois pontos 5i6ti

A distância entre os pontos A (xa, ya) e B (xb, yb) é definida pelo segmento de reta AB, que vamos denotar dAB. Veja como obter o tamanho desse segmento, ou seja, a distância.

Note que a distância entre os pontos A e B é a hipotenusa do triângulo, logo, para determiná-la, vamos utilizar o teorema de Pitágoras.

  • Exemplo 454j3a

Calcule a distância entre os pontos A (0, 0) e B (4, 2).

Substituindo os valores das coordenadas na fórmula, temos:

Para aprofundar-se ainda mais nesse conceito da geometria analítica, leia nosso texto: Distância entre dois pontos.

  • Coordenadas do ponto médio 6h26n

Na geometria plana, o ponto médio é o ponto que divide o segmento de reta AB ao meio, ou seja, em duas partes iguais. Na geometria analítica, as coordenadas do ponto médio são dadas por:

A coordenada do ponto médio, ou seja, do ponto M, é dada por:

  • Exemplo 454j3a

Determine o ponto médio do segmento AB, sabendo que A (2, 1) e B (6, 5).

Substituindo os valores das coordenadas na fórmula, temos:

  • Condição de alinhamento de três pontos n10z

Considere três pontos — A (xa, ya), B (xb, yb) e C (xc, yc) — distintos no plano. Diremos que os pontos são colineares se o determinante abaixo for igual a zero. Podemos dizer também que eles são colineares se existir uma reta que os contenha.

Leia também: Equações com matrizes: como resolver?

Exercícios resolvidos 2s5z18

Questão 1 – (PUC-SP) Os pontos A (3, 5), B (1, -1) e C (x, -16) pertencem a uma mesma reta. Determine o valor de x.

Solução

No enunciado foi dado que os pontos pertencem à mesma reta, ou seja, os pontos A, B e C são colineares. Logo, o determinante é igual a zero.

 

 

Por Robson Luiz
Professor de Matemática


Fonte: Brasil Escola - /matematica/definicao-geometria-analitica.htm